首页 | 本学科首页   官方微博 | 高级检索  
     


Adaptive integral method combined with the loose GMRES algorithm for planar structures analysis
Authors:W Zhuang  Z H Fan  Y Q Hu
Affiliation:Department of Communication Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract:In this article, the adaptive integral method (AIM) is used to analyze large‐scale planar structures. Discretization of the corresponding integral equations by method of moment (MoM) with Rao‐Wilton‐Glisson (RWG) basis functions can model arbitrarily shaped planar structures, but usually leads to a fully populated matrix. AIM could map these basis functions onto a rectangular grid, where the Toeplitz property of the Green's function would be utilized, which enables the calculation of the matrix‐vector multiplication by use of the fast Fourier transform (FFT) technique. It reduces the memory requirement from O(N2) to O(N) and the operation complexity from O(N2) to O(N log N), where N is the number of unknowns. The resultant equations are then solved by the loose generalized minimal residual method (LGMRES) to accelerate iteration, which converges much faster than the conventional conjugate gradient method (CG). Furthermore, several preconditioning techniques are employed to enhance the computational efficiency of the LGMRES. Some typical microstrip circuits and microstrip antenna array are analyzed and numerical results show that the preconditioned LGMRES can converge much faster than conventional LGMRES. © 2008 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2009.
Keywords:planar structures  adaptive integral method  Loose GMRES method
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号