首页 | 本学科首页   官方微博 | 高级检索  
     


A corotational interpolatory model for fabric drape simulation
Authors:X. H. Liu  K. Y. Sze
Affiliation:1. Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China;2. Department of Mechanics, Huazhong University of Science & Technology, Wuhan, China
Abstract:Fabric drapes are typical large displacement, large rotation but small strain problems. In particle models for fabric drape simulation, the fabric deformation is characterized by the displacements of the particles distributed over the fabric. In this paper, a new particle model based on the corotational concept is formulated. Under the small membrane strain assumption, the bending energy can be approximated as a quadratic function of the particle displacements that are finite. In other words, the tangential bending stiffness matrix is a constant and only the tangential membrane stiffness matrix needs to be updated after each iteration or step. On the other hand, the requirement on the particle alignment is relaxed by interpolating the particle displacement in a patch of nine particles. To account for the membrane energy, a simple and efficient method similar to the three‐node membrane triangular element employing the Green strain measure is adopted. With the present model, the predicted drapes appear to be natural and match our daily perception. In particular, circular clothes and circular pedestal that can only be treated laboriously by most particle models can be conveniently considered. Copyright © 2008 John Wiley & Sons, Ltd.
Keywords:particle method  corotational  interpolation  fabric drape  large displacement
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号