首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical study of thermal stresses in high-temperature proton exchange membrane fuel cell (HT-PEMFC)
Authors:Kyeongmin Oh  Purushothama ChipparHyunchul Ju
Affiliation:School of Mechanical Engineering, Inha University, 253 Yonghyun-Dong, Nam-Gu, Incheon 402-751, Republic of Korea
Abstract:The purpose of this work is to numerically examine the thermal stress distributions in a high-temperature proton exchange membrane fuel cell (HT-PEMFC) based on a phosphoric acid doped polybenzimidazole (PBI) membrane. A fluid structure interaction (FSI) method is adopted to simulate the expansion/compression that arises in various components of a membrane electrode assembly (MEA) during the HT-PEMFC assembly processes, as well as during cell operations. First, three-dimensional (3-D) finite element method (FEM) simulations are conducted to predict the cell deformation during cell clamping. Then, a nonisothermal computational fluid dynamic (CFD)-based HT-PEMFC model developed in a previous study 1] is applied to the deformed cell geometry to estimate the key species and temperature distributions inside the cell. Finally, the temperature distributions obtained from these CFD simulations are employed as the input load for 3-D FEM simulations. The present numerical study provides a fundamental understanding of the stress–temperature interaction during HT-PEMFC operations and demonstrates that the coupled FEM/CFD HT-PEMFC model presented in this paper can be used as a useful tool for optimizing HT-PEMFC clamping and operating conditions.
Keywords:High-temperature proton exchange membrane fuel cell (HT-PEMFC)  Polybenzimidazole (PBI)  Numerical modeling  Thermal stress  Finite element analysis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号