首页 | 本学科首页   官方微博 | 高级检索  
     


Bio-fuel reformation for solid oxide fuel cell applications. Part 3: Biodiesel–diesel blends
Authors:Jiefeng Lin  Thomas A TraboldMark R Walluk  Daniel F Smith
Affiliation:Golisano Institute for Sustainability and Center for Sustainable Mobility, Rochester Institute of Technology, 111 Lomb Memorial Drive, Rochester, NY 14623, USA
Abstract:The auto-thermal reforming (ATR) performance of diesel blended with biodiesel (e.g., B5, B10, B20, B40, and B80) was investigated and compared to pure diesel and biodiesel ATR in a single-tube reformer with ceramic monolith wash-coated rhodium/ceria–zirconia catalyst. The initial operating condition of the ATR of all studied fuels was set as total moles of oxygen from air, water, and fuel per mole of carbon (O/C) = 1.47, moles of water to carbon (H2O/C) = 0.6, and gas hourly space velocity = 33,950 h−1 at 1223 K reformer temperature, to achieve the same syngas (H2 + CO) production rate. A direct photo-acoustic micro-soot meter was applied to quantify the dynamic evolution of carbon formation and a mass spectrometer was used to measure the gas composition of reformer effluents. The blends with more biodiesel content were found to have a lower syngas production rate and reforming efficiency, and require more air and higher reformer temperature to avoid carbon formation. Strong correlations between ethylene and solid carbon concentration were observed in the reformation of all the fuels and blends, with more biodiesel content tending to have higher ethylene production. This study is one component of a three-part investigation of bio-fuel reforming, also including fuel vaporization and reactant mixing (Part 1) and biodiesel (Part 2).
Keywords:Biodiesel&ndash  diesel blends  Auto-thermal reforming  Carbon formation  Hydrogen production  Solid oxide fuel cell
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号