首页 | 本学科首页   官方微博 | 高级检索  
     


Electronic structure and nonlinear optical properties of model push-pull polyenes with modified indanone groups: a theoretical investigation
Authors:Szymusiak   Zielinski   Domagalska   Wilk
Affiliation:Department of Technology and Environmental Protection, Poznan University of Economics, Poland.
Abstract:Several model polyenes with modified indanone groups were studied by means of density functional theory (DFT) B3LYP/6-31G*, ab initio HF/3-21G* and semiempirical AM1 methods. We investigated the effect of several substituents upon the relationship between the structure, spatial distribution of the highest occupied and the lowest unoccupied pi-MOs, a concept of the global softness and the global hardness as well as both linear and nonlinear polarizabilities for the set of pi-electron chromophores represented by the short-chain model polyene (butadiene) carrying out p-methoxyphenyl group on the one end and several modified indanone groups on the opposite end of the molecule. As probing endocyclic groups used to modify the structure of indanone the following substituents: > CH2; > C=O; > SO2, > C=CH(NO2) and > C=C(CN)2 were selected. The cubic relationship between the polarizability and the global softness was found. The highest polarizabilities (alpha, beta, gamma) are predicted for the derivatives with > C=C(CN)2 group. It was found that the value of beta depends mainly on the difference between dipole moments in the excited and ground states of the molecules. In the case of > SO2 group the results of AMI calculations significantly deviate from relationships found for other derivatives. Experimental IR and Raman spectra of newly synthesized indandione derivative of cinnamaldehyde were compared with computed ones.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号