首页 | 本学科首页   官方微博 | 高级检索  
     


Thermoelectric and Mechanical Propertiesof Novel Hot-Extruded PbTe n-Type Material
Authors:D. Vasilevskiy  R. A. Masut  S. Turenne
Affiliation:1. ??cole Polytechnique de Montr??al, C.P. 6079, Succ. Centre-Ville, Montreal, QC, H3C 3A7, Canada
Abstract:Lead telluride-based materials demonstrate the highest thermoelectric performance in the temperature range from 200°C to 400°C, and they are of interest for numerous waste heat recovery applications. Unfortunately, these conventionally grown materials are usually very brittle, which results in significant material loss during module manufacturing and a decrease in module reliability when subjected to continuous vibrations common for automotive applications. We present a hot extrusion process developed for the first time for PbTe which yields polycrystalline materials with strong mechanical properties combined with high thermoelectric performance. n-Type lead telluride was extruded from conventionally synthesized and powdered material at temperatures in the range of 450°C to 520°C depending on material stoichiometry. The extruded rods were of cylindrical shape with 2.54?cm diameter and lengths up to 40?cm. Young??s modulus measured using mechanical spectroscopy varied from 59?GPa to 51?GPa for temperatures in the range of 20°C to 300°C. Slicing and dicing of extruded rods to obtain cubical samples with 2?mm side demonstrated no difficulties, illustrating the material homogeneity and its potential for manufacturing module legs. The microstructure of the material was studied by scanning electron microscopy. Doping with antimony iodide during the milling process controls the conduction electron concentration in the range from 1?×?1019?cm?3 to 6?×?1019?cm?3. For optimized doping of 0.08?wt.% SbI3, the maximum thermoelectric figure of merit (ZT) reaches a value of 0.99 at 380°C, as measured by the Harman method. The combination of high thermoelectric performance and improved fracture toughness makes this novel hot-extruded polycrystalline PbTe material highly competitive for many applications.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号