首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持向量机的交通视频人车识别研究
引用本文:张建飞,陈树越,刘会明,胡楠. 基于支持向量机的交通视频人车识别研究[J]. 电视技术, 2011, 35(15): 1-3,15
作者姓名:张建飞  陈树越  刘会明  胡楠
作者单位:中北大学信息与通信工程学院,山西太原,030051
摘    要:提出一种静止摄像机条件下车辆和行人的支持向量机(SVM)识别方法。首先根据背景差分法对监控视频中的运动目标进行检测,提取出运动目标的基本轮廓,然后利用数学形态学方法对目标进一步检测处理。用星形向量表示法对运动目标提取8个特征,以及高度、宽度和高宽比作为另外3个特征,通过构造SVM分类器,实现了基于SVM的图像分类和识别。实验结果表明,该方法能够在视频监控中快速准确地对运动的车辆和行人进行检测和分类,平均识别率达到96.97%。

关 键 词:支持向量机  目标检测  背景差分  特征提取  目标识别

Recognition of Vehicle and Pedestrian in Traffic Video Based on SVM
ZHANG Jianfei,CHEN Shuyue,LIU Huiming,HU Nan. Recognition of Vehicle and Pedestrian in Traffic Video Based on SVM[J]. Ideo Engineering, 2011, 35(15): 1-3,15
Authors:ZHANG Jianfei  CHEN Shuyue  LIU Huiming  HU Nan
Affiliation:ZHANG Jianfei,CHEN Shuyue,LIU Huiming,HU Nan(School of Information and Communication Engineering,North University of China,Taiyuan 030051,China)
Abstract:In this paper,an approach based on SVM to recognize the moving vehicles and pedestrian with a static camera is presented.Firstly,the moving object in the video can be detected by background subtraction,and their basic outline is extracted.Then,the target by mathematical morphology is given.Eight features of the moving object with center radiation are picked up,and height,width,aspect ratio as the other three characteristics.Image classification and recognition based on SVM are achieved by constructing the S...
Keywords:SVM  object detection  background subtraction  feature extraction  object recognition  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号