首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanical properties and corrosion behavior of lead-silicon carbide fiber and lead-carbon fiber composites made by electrodeposition
Authors:J.C. Viala  M. El Morabit  J. Bouix
Abstract:Multifilament silicon carbide fibers (Nippon Carbon, Nicalon type) and carbon fibers (Thornel, Pan T 300 and Pitch type) were used to produce lead-matrix composite materials for battery plate grid applications. Lead was impregnated into the fibers by electrodeposition from fluoborate baths. The electrical conductivity of carbon fibers was sufficient for direct electroplating; silicon carbide fibers were electroless plated with copper beforehand. The experimental conditions for good penetration of lead into the fiber tows were determined.Unidirectional composite samples with a fiber volume fraction of 5 to 25% were prepared from both lead impregnated fiber sheets and rods by hot-pressing (280°C, 50 MPa, 5–30 mm). The flexural strength and modulus of these samples were measured as a function of the infiltration current density and of the fiber volume fraction. Ultimate strengths in the range 300–400 MPa were attained for both lead-silicon carbide and lead-carbon composites, at a fiber volume fraction of about 25%. These latter composites exhibited a good corrosion resistance towards 38.5 wt-% sulfuric acid under non-anodic conditions.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号