首页 | 本学科首页   官方微博 | 高级检索  
     


Power system stabilizer design using Strength Pareto multi-objective optimization approach
Authors:H Yassami  A Darabi  SMR Rafiei
Affiliation:1. Faculty of Electrical & Robotic Engineering, Shahrood University of Technology, Shahrood, Iran;2. Department of Electrical Engineering, Politecnico Di Torino, Torino, Italy
Abstract:Power system stabilizers (PSSs) are the most well-known and effective tools to damp power system oscillation caused by disturbances. To gain a good transient response, the design methodology of the PSS is quite important. The present paper, discusses a new method for PSS design using the multi-objective optimization approach named Strength Pareto approach. Maximizations of the damping factor and the damping ratio of power system modes are taken as the goals or two objective functions, when designing the PSS parameters. The program generates a set of optimal parameters called Pareto set corresponding to each Pareto front, which is a set of optimal results for the objective functions. This provides an excellent negotiation opportunity for the system manager, manufacturer of the PSS and customers to pick out the desired PSS from a set of optimally designed PSSs. The proposed approach is implemented and examined in the system comprising a single machine connected to an infinite bus via a transmission line. This is also done for two familiar multi-machine systems named two-area four-machine system of Kundur and ten-machine 39-bus New England system. Parameters of the Conventional Power System Stabilizer (CPSS) are optimally designed by the proposed approach. Finally, a comparison with famous GAs is given.
Keywords:Multi-objective optimization  Power system stabilizer  Strength Pareto algorithm
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号