首页 | 本学科首页   官方微博 | 高级检索  
     

基于多变量属性分类的图像形态滤波方法研究
引用本文:周开军 周鲜成 申立智 余伶俐. 基于多变量属性分类的图像形态滤波方法研究[J]. 仪器仪表学报, 2015, 36(8): 1735-1743
作者姓名:周开军 周鲜成 申立智 余伶俐
作者单位:1. 湖南商学院计算机与信息工程学院长沙401205; 2. 中南大学信息科学与工程学院长沙410083
基金项目:国家自然科学基金(61304253,61403426,61471170)、教育部博士点新教师基金(20130162120018)、湖南省自然科学基金(13JJ3111)、湖南省教育厅重点项目(14A078,13A048,15A100)项目资助
摘    要:针对复杂结构图像中形态滤波的单一属性难以判定最大树节点状态的问题,提出了基于多变量属性分类的最大树图像形态滤波方法。首先标记图像的各个连通区域,将图像转换为最大树数据结构,然后计算最大树各个节点的面积、灰度值及Zernike矩属性值,并构成节点的属性向量,运用属性样本数据对支持向量机进行训练,获得支持向量机分类模型,最后根据多变量属性分类结果给出节点的枝剪策略。实验结果表明,该方法能有效地滤除复杂结构图像中不同灰度级、大小及形状的噪声区域,同时保留图像目标区域的细节特征。

关 键 词:形态滤波;连通区域;最大树;枝剪策略;多变量属性分类

Image morphological filtering method based on multivariateattributes classification
Zhou Kaijun,Zhou Xiancheng,Shen Lizhi,Yu Lingli. Image morphological filtering method based on multivariateattributes classification[J]. Chinese Journal of Scientific Instrument, 2015, 36(8): 1735-1743
Authors:Zhou Kaijun  Zhou Xiancheng  Shen Lizhi  Yu Lingli
Affiliation:1. School of Computer and Information Engineering, Hunan University of Commerce, Changsha 401205, China;2. School of Information Science and Engineering, Central South University, Changsha 410083,China
Abstract:It is difficult to delete or retain max tree node by using single attribute in morphology filtering for complex content image. A novel pruning strategy based on the multivariate attribute classification rule is presented. Firstly, each connected region is labeled, and the image is transformed into the max tree data structure. Then, some attribute values such as node area, gray value and first Zernike moment are calculated. These separated node attribute values are assembled to form an attribute vector. Meanwhile, support vector machine (SVM) is trained by utilizing a large number of attribute sample data, which can obtain a SVM classification model. Finally, the node state is judged by the multivariate attribute classification rule. The experimental results show that this method can not only effectively filter noise while preserving image detail, but also achieved less structural similarity index than other methods.
Keywords:morphological filtering   connected region   max tree   pruning strategy   multivariate attributes classification
本文献已被 CNKI 等数据库收录!
点击此处可从《仪器仪表学报》浏览原始摘要信息
点击此处可从《仪器仪表学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号