首页 | 本学科首页   官方微博 | 高级检索  
     

Sen-BiGAT-Inter:情绪原因对抽取方法
引用本文:冯浩甲,李旸,王素格,符玉杰,慕永利. Sen-BiGAT-Inter:情绪原因对抽取方法[J]. 中文信息学报, 2022, 36(5): 153-162
作者姓名:冯浩甲  李旸  王素格  符玉杰  慕永利
作者单位:1.山西大学 计算机与信息技术学院,山西 太原 030006;
2.山西大学 计算机智能与中文信息处理教育部重点实验室,山西 太原 030006;
3.山西财经大学 金融学院, 山西 太原 030006
基金项目:国家自然科学基金(62106130,62076158 );山西省重点研发计划项目(201803D421024);山西省研究生教育创新项目(2021Y148);山西省基础研究计划(20210302124084);山西省高等学校科技创新项目(2021L284)
摘    要:情绪原因对抽取任务是将情绪子句与原因子句同时抽取。针对该任务,现有模型的编码层未考虑强化情感词语义表示,且仅使用单一图注意力网络,因此,该文提出了一个使用情感词典、图网络和多头注意力的情绪原因对抽取方法(Sen-BiGAT-Inter)。该方法首先利用情感词典与子句中的情感词汇匹配,并将匹配的情感词汇与该子句进行合并,再使用预训练模型BERT(Bidirectional Encoder Representation from Transformers)对句子进行表示。其次,建立两个图注意力网络,分别学习情绪子句和原因子句表示,进而获取候选情绪原因对的表示。在此基础上,应用多头注意力交互机制学习候选情绪原因对的全局信息,同时结合相对位置信息得到候选情绪原因对的表示,用于实现情绪原因对的抽取。在中文情绪原因对抽取数据集上的实验结果显示,相比目前最优的结果,该文所提出的模型在 F1 值上提升约1.95。

关 键 词:情绪原因对抽取  情感词典  图注意力网络  

Sen-BiGAT-Inter: A Method for Emotion-Cause Pair Extraction
FENG Haojia,LI Yang,WANG Suge,FU Yujie,MU Yongli. Sen-BiGAT-Inter: A Method for Emotion-Cause Pair Extraction[J]. Journal of Chinese Information Processing, 2022, 36(5): 153-162
Authors:FENG Haojia  LI Yang  WANG Suge  FU Yujie  MU Yongli
Affiliation:1.School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi 030006, China;
2.Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, Shanxi University, Taiyuan, Shanxi 030006, China;
3.School of Finance, Shanxi University of Finance and Economics, Taiyuan, Shanxi 030006, China
Abstract:Emotion-cause pair extraction is to extract both emotion clause and cause clause at the same time. For this task, the existing method of a single graph attention network does not consider emphasize the semantic representation of emotion words in the encoding layer. This paper proposes a Sen-BiGAT-Inter method using sentiment lexicon, graph network and multi-attention. The proposed method uses the sentiment lexicon to merge this clause with the emotion words in the clause, and uses the pre-training model BERT (Bidirectional Encoder Representation from Transformers) to obtain the clause representation. Then, we build two graph attention networks to learn the representation of emotion clause and cause clause, respectively, and then obtain the representation of candidate emotion-cause pair. On this basis, we get the emotion-cause pair with causality by using multi-head attention to learn the global information of candidate sentence pairs, and combing the relative position information to get the final representation of pairs. The experimental results on Chinese emotion-cause pair extraction dataset show the proposed model improves the F1 value by about 1.95 compared with the current optimal results.
Keywords:emotion-cause pair extraction    sentiment lexicon    graph attention network  
点击此处可从《中文信息学报》浏览原始摘要信息
点击此处可从《中文信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号