首页 | 本学科首页   官方微博 | 高级检索  
     


Coupling multibody dynamics and computational fluid dynamics on 8192 processor cores
Authors:J. Götz  K. Iglberger  C. Feichtinger  S. Donath  U. Rüde
Affiliation:1. Institut für Physikalische Chemie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany;2. Institut für Computerphysik, Universität Stuttgart, D-70569 Stuttgart, Germany;3. Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany;1. Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India;2. Mechanical Engineering, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia;3. KAUST Supercomputing Laboratory, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia;1. Department of Mechanical & Aerospace Engineering, Jett Hall 515, 1040 S. Horseshoe Dr., MSC 3450, New Mexico State University, Las Cruces, New Mexico 88003, United States;2. State Key Laboratory of High Temperature Gas Dynamics, No. 15 Beisihuanxi Road, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;3. Sr. AIAA Member in Tucson, AZ 85716, United States;1. Department of Earth and Environmental Sciences, Sec. Geophysics, Ludwig-Maximilians Munich University, Theresienstrasse 41, 80333 Munich, Germany;2. ROCEEH Research Centre “The Role of Culture in Early Expansions of Humans”, Heidelberg Academy of Sciences, Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt am Main, Germany;3. Armenian National Academy of Sciences, Institut of Botany, Avan-63, Yerevan 375063, Armenia;4. Department of Earth Sciences, Utrecht University, Budapestlaan 17, 3584 CD Utrecht, The Netherlands
Abstract:This paper describes a method for the fully resolved simulation of particle laden flows. For this purpose, we discuss the parallelization of large scale coupled fluid structure interaction with up to 37 million geometrically modeled moving objects incorporated in the flow. The simulation is performed using a 3D lattice Boltzmann solver for the fluid flow and a so-called rigid body physics engine for the treatment of the objects. The numerical algorithms and the parallelization are discussed in detail. Furthermore, performance results are presented for test cases on up to 8192 processor cores running on an SGI Altix supercomputer. The approach enables a detailed simulation of large scale particulate flows that are relevant for many industrial applications.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号