首页 | 本学科首页   官方微博 | 高级检索  
     

基于DNN与规则学习的机器翻译算法研究
引用本文:陶媛媛,陶丹. 基于DNN与规则学习的机器翻译算法研究[J]. 计算机测量与控制, 2021, 29(1): 150-153. DOI: 10.16526/j.cnki.11-4762/tp.2021.01.031
作者姓名:陶媛媛  陶丹
作者单位:西安交通大学城市学院,西安710000;西安市曲江第一中学,西安710000
基金项目:陕西省教育厅专项科研计划项目 No.18JK1012
摘    要:通过以目标信息为指导的卷积体系总结相关源信息,提出了一种系统的处理语言方法;利用在解码过程中使用不同的引导信号,经过特殊设计的卷积+门控体系结构可以查明与预测目标单词相关的源句子部分,并将其与整个源句子的上下文融合在一起形成统一表示形式;研究结果表明,模型将表示形式与目标语言单词一起馈入深度神经网络(DNN),形成更强大的神经网络联合模型(NNJM);通过两个NIST汉英翻译任务的实验验证,在相同设置下,tagCNN和inCNN在Dep2Str基线上的改善幅度分别为+1.28,+1.75 BLEU,所提出的模型分别优于NIST MT04和MT05的平均值+0.36,+0.83 BLEU,比传统DNN机器翻译平均提高了+1.08 BLEU点;模型为统计机器翻译研究提供了新思路。

关 键 词:深度神经网络  机器翻译  神经网络联合模型  卷积
收稿时间:2020-05-17
修稿时间:2020-06-04

Research on machine translation algorithm based on DNN and rule learning
Tao Yuanyuan,Tao Dan. Research on machine translation algorithm based on DNN and rule learning[J]. Computer Measurement & Control, 2021, 29(1): 150-153. DOI: 10.16526/j.cnki.11-4762/tp.2021.01.031
Authors:Tao Yuanyuan  Tao Dan
Affiliation:(City College Xi'an Jiao Tong University,Xi'an 710000,China;Xi'an Qu Jiang No.1 High School,Xi'an 710000,China)
Abstract:Based on the convolution system guided by the target information, this paper summarizes the relevant source information and proposes a systematic processing language method. By using different guide signals in the decoding process, the specially designed convolution + gating architecture can identify the source sentence part related to the predicted target word, and fuse it with the context of the whole source sentence to form a unified representation. The results show that the model feeds the representation and the target language words into DNN to form a stronger neural network joint model (NNJM). The experimental results of two NIST Chinese-English translation tasks show that under the same settings, the improvement of tagCNN and inCNN on the Dep2str baseline is + 1.28 and + 1.75 BLEU, respectively. The proposed model is superior to the average of NIST MT04 and MT05 + 0.36 and + 0.83 BLEU, respectively, which is + 1.08 BLEU higher than the traditional DNN machine translation. The model provides a new way for statistical machine translation research.
Keywords:deep neural network   machine translation   neural network joint model   convolution
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机测量与控制》浏览原始摘要信息
点击此处可从《计算机测量与控制》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号