首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进蚁群算法的多目标跟踪数据关联方法
引用本文:尹玉萍,刘万军,魏林. 基于改进蚁群算法的多目标跟踪数据关联方法[J]. 计算机工程与应用, 2014, 50(16): 16-20
作者姓名:尹玉萍  刘万军  魏林
作者单位:1.辽宁工程技术大学 电气与控制工程学院,辽宁 葫芦岛 1251052.辽宁工程技术大学 软件学院,辽宁 葫芦岛 1251053.辽宁工程技术大学 基础教学部,辽宁 葫芦岛 125105
摘    要:针对多目标跟踪数据关联问题,提出一种快速实现多目标数据关联算法CACDA(Chaos Ant Colony Data Association),利用蚁群算法的正反馈和并行搜索能力构建初始解并进行优化,引入自适应混沌机制,对信息素进行全局更新和混沌扰动,改善了蚁群算法在搜索后期出现停滞以及收敛于局部最优解的缺陷。实验结果表明,该算法不仅可以获得较高的关联准确率,也可以有效提高关联速度。

关 键 词:蚁群算法  混沌  多目标跟踪  数据关联  

Improved ant colony algorithm based data association method for multi-target tracking
YIN Yuping,LIU Wanjun,WEI Lin. Improved ant colony algorithm based data association method for multi-target tracking[J]. Computer Engineering and Applications, 2014, 50(16): 16-20
Authors:YIN Yuping  LIU Wanjun  WEI Lin
Affiliation:1.School of Electrical and Control Engineering, Liaoning Technical University, Huludao, Liaoning 125105, China2.School of Software, Liaoning Technical University, Huludao, Liaoning 125105, China3.The Department of Basic Education, Liaoning Technical University, Huludao, Liaoning 125105, China
Abstract:For the application of multi-sensor multi-target tracking, a method of data association based on improved ant colony algorithm is proposed in this study, in order to improve the ant colony algorithm in which the application effect of global optimization problems, the initial solution is built and optimized by use of the characters of positive feedback and parallel search of ant colony algorithm, introducing an adaptive Chaos mechanism, globally pheromone update and chaotic disturbance. Experimental results show that the presented algorithm is effective.
Keywords:ant colony algorithm  chaos  multi-target tracking  data association  
本文献已被 CNKI 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号