首页 | 本学科首页   官方微博 | 高级检索  
     

融合形状先验的向量CV模型图像分割算法
引用本文:王万玉,杨建功,汪西莉. 融合形状先验的向量CV模型图像分割算法[J]. 计算机工程与应用, 2014, 50(15): 140-144
作者姓名:王万玉  杨建功  汪西莉
作者单位:陕西师范大学 计算机科学学院,西安 710062
摘    要:Chan等人提出的向量CV模型尽管解决了传统CV模型无法分割向量值图像的问题,但是向量CV模型对于含有噪声或遮挡物等复杂的图像,无法正确分割目标。针对此问题提出一种融合形状先验向量CV模型。其能量泛函主要包含形状先验项、图像区域信息项以及距离正则项。此能量函数使得主动轮廓和形状先验位置相近时停止演化。该模型所用形状模板可以与目标形状仿射不同,使得算法更加灵活。该模型对含噪以及目标遮挡的图像具有很好的分割效果。

关 键 词:水平集  向量CV模型  图像分割  形状先验  

Algorithm for image segmentation based on vector CV model combining shape prior
WANG Wanyu,YANG Jiangong,WANG Xili. Algorithm for image segmentation based on vector CV model combining shape prior[J]. Computer Engineering and Applications, 2014, 50(15): 140-144
Authors:WANG Wanyu  YANG Jiangong  WANG Xili
Affiliation:School of Computer Science, Shaanxi Normal University, Xi’an 710062, China
Abstract:Chan et al proposes the vector CV model to solve the problem that the traditional CV model cannot segment the vector images, but it has a bad effect on the complex images that have noise or occlusions, so this paper proposes the vector CV model combining shape prior. Its energy function is mainly composed of shape prior information term and image area information term and distance regularization term. When the evolved active contour and shape prior have similar positions, the contour stops evolution. According to the affine transformation of shape, using a gradient descent algorithm for template to match makes the algorithm more flexible. The model has good segmentation result for the noise and clutter image.
Keywords:level set  vector CV model  image segmentation  shape prior  
本文献已被 CNKI 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号