首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传优化神经网络的网络入侵特征检测
作者姓名:陈鸿星
作者单位:江西师范大学 数学与信息科学学院,南昌 330022
摘    要:为了提高网络入侵检测正确率,提出一种遗传优化神经网络的网络入侵特征选择和检测算法。该方法先将网络状态特征和RBF神经网络参数作为遗传算法的个体,把检测正确率作为适应度函数;然后利用遗传算法的选择、交叉和变异等操作对网络状态特征和RBF神经网络参数进行优化,最后利用KDD 1999数据集对算法性能进行测试。测试结果表明:遗传优化神经网络能够快速获得最优网络状态特征和分类器参数,同时提高了网络入侵检测正确率。

关 键 词:网络入侵  特征选择  遗传算法  径向基函数(RBF)神经网络  
本文献已被 CNKI 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号