首页 | 本学科首页   官方微博 | 高级检索  
     

Fitzhugh-Nagumo方程在非齐次边界条件下解的动力学分析
引用本文:石丹青,柴玉珍. Fitzhugh-Nagumo方程在非齐次边界条件下解的动力学分析[J]. 中北大学学报(自然科学版), 2012, 0(1): 43-46
作者姓名:石丹青  柴玉珍
作者单位:太原理工大学数学学院
基金项目:太原理工大学校科技发展基金资助项目(博士启动费)
摘    要:Hodgkin-Huxley方程描述了生物神经的放电活动,Fitzhugh-Nagumo方程是Hodgkin-Huxley方程的简化模型.讨论了Fitzhugh-Nagumo神经传导方程在非齐次边界条件下的初边值问题,利用Galerkin方法证明了Fitzhugh-Nagumo方程在非齐次边界条件下整体解的存在性和唯一性;运用Lyapunov稳定性理论对Fitzhugh-Nagumo方程进行了稳定性分析.

关 键 词:Fitzhugh-Nagumo方程  稳定性  Lyapunov函数  Galerkin方法

Dynamics Analysis of Solutions for the Fitzhugh-Nagumo Equations with Inhomogeneous Boundary Conditions
SHI Dan-qing,CHAI Yu-zhen. Dynamics Analysis of Solutions for the Fitzhugh-Nagumo Equations with Inhomogeneous Boundary Conditions[J]. Journal of North University of China, 2012, 0(1): 43-46
Authors:SHI Dan-qing  CHAI Yu-zhen
Affiliation:(College of Mathematics,Taiyuan University of Technology,Taiyuan 030024,China)
Abstract:Hodgkin-Huxley equation describes the discharge activity of biological neural.Fitzhugh-Nagumo equation is a simplified model of Hodgkin-Huxley equation.The initial-boundary value problems of the Fitzhugh-Nagumo nerve conduction equation with inhomogeneous boundary conditions were discussed.The existence and uniqueness of the global solutions for the Fitzhugh-Nagumo equation with inhomogeneous boundary conditions was proved by means of the Galerkin method.The stability of Fitzhugh-Nagumo equation was analyzed by means of the Lyapunov stability theory.
Keywords:Fitzhugh-Nagumo equations  stability  Lyapunov fuction  Galerkin method
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号