首页 | 本学科首页   官方微博 | 高级检索  
     


A multidimensional nonlinear edge-preserving filter for magneticresonance image restoration
Authors:Soltanian-Zadeh   H. Windham   J.P. Yagle   A.E.
Affiliation:Dept. of Electr. Eng. and Comput. Sci., Michigan Univ., Ann Arbor, MI.
Abstract:The paper presents a multidimensional nonlinear edge-preserving filter for restoration and enhancement of magnetic resonance images (MRI). The filter uses both interframe (parametric or temporal) and intraframe (spatial) information to filter the additive noise from an MRI scene sequence. It combines the approximate maximum likelihood (equivalently, least squares) estimate of the interframe pixels, using MRI signal models, with a trimmed spatial smoothing algorithm, using a Euclidean distance discriminator to preserve partial volume and edge information. (Partial volume information is generated from voxels containing a mixture of different tissues.) Since the filter's structure is parallel, its implementation on a parallel processing computer is straightforward. Details of the filter implementation for a sequence of four multiple spin-echo images is explained, and the effects of filter parameters (neighborhood size and threshold value) on the computation time and performance of the filter is discussed. The filter is applied to MRI simulation and brain studies, serving as a preprocessing procedure for the eigenimage filter. (The eigenimage filter generates a composite image in which a feature of interest is segmented from the surrounding interfering features.) It outperforms conventional pre and post-processing filters, including spatial smoothing, low-pass filtering with a Gaussian kernel, median filtering, and combined vector median with average filtering.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号