首页 | 本学科首页   官方微博 | 高级检索  
     


Polyurethane/poly(ethylene‐co‐ethyl acrylate) and functional carbon black‐based hybrids: Physical properties and shape memory behavior
Authors:Ayesha Kausar  Muhammad Siddiq
Affiliation:1. Nanosciences Division, National Centre for Physics, Quaid‐i‐Azam University Campus, Islamabad, Pakistan;2. Department of Chemistry, Quaid‐i‐Azam University, Islamabad, Pakistan
Abstract:A polyurethane (PU) was developed from poly(dimethylamine‐co‐epichlorohydrin‐co‐ethylenediamine) (PDMAE) and polyethylene glycol (PEG) as soft segment and 2,4‐toluene diisocyanate (TDI) incorporating as hard segment. Later PU was blended with poly(ethylene‐co‐ethyl acrylate) (PEEA). Poly(vinyl alcohol)‐functionalized carbon black (CB‐PVA) nanoparticles was used as filler. The structure, morphology, mechanical, crystallization, and shape memory behavior (heat and voltage) were investigated methodically. Due to physical interaction of the blend components, unique self‐assembled network morphology was observed. The interpenetrating network was responsible for 83% rise in tensile modulus and 46% increase in Young's modulus of PU/PEEA/CB‐PVA 1 hybrid compared with neat PU/PEEA bend. Electrical conductivity was increased to 0.2 Scm?1 with 1 wt % CB‐PVA nanofiller. The original shape of sample was almost 94% recovered using heat induced shape memory effect while 97% recovery was observed in an electric field of 40 V. Electroactive shape memory results were found better than heat stimulation effect. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43481.
Keywords:blends  differential scanning calorimetry (DSC)  morphology  polyurethanes  synthesis and processing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号