首页 | 本学科首页   官方微博 | 高级检索  
     

基于多特征参数和概率神经网络的滚动轴承故障诊断方法
引用本文:裴峻峰,毕昆磊,吕苗荣,贺超,沈科君. 基于多特征参数和概率神经网络的滚动轴承故障诊断方法[J]. 中国机械工程, 2014, 25(15): 2055-2058
作者姓名:裴峻峰  毕昆磊  吕苗荣  贺超  沈科君
作者单位:常州大学,常州,213016
基金项目:国家自然科学基金资助项目(51175051)
摘    要:针对滚动轴承故障振动信号的非平稳特性,提出了一种基于多特征参数和概率神经网络的滚动轴承故障诊断方法。首先利用经验模态分解(EMD)方法将采集到的滚动轴承原始振动信号分解为有限个固有模式函数(IMF)之和,然后提取表征故障信息的若干个IMF的能量、峭度和偏度作为概率神经网络的输入参数来进行故障分类。试验结果表明,该方法可以准确、有效地识别滚动轴承的工作状态和故障类型,是一种可行的滚动轴承故障诊断方法。

关 键 词:经验模态分解(EMD)  多特征参数  概率神经网络  故障诊断  

Fault Diagnosis of Roller Bearings Based on Characteristic Parameters and Probabilistic Neural Network
Pei Junfeng,Bi Kunlei,Lü Miaorong,He Chao,Shen Kejun. Fault Diagnosis of Roller Bearings Based on Characteristic Parameters and Probabilistic Neural Network[J]. China Mechanical Engineering, 2014, 25(15): 2055-2058
Authors:Pei Junfeng  Bi Kunlei  Lü Miaorong  He Chao  Shen Kejun
Affiliation:Changzhou University,Changzhou,Jiangsu,213016
Abstract:According to the non-stationary characteristics of roller bearing fault vibration signals,a fault diagnosis approach based on on multiple characteristic parameters and probabilistic neural network was proposed. Firstly, original signals were decomposed into a finite number of stationary intrinsic mode functions(IMFs). Energy, kurtosis and skewness feature parameters were extracted from IMFs which contained main fault informations could be served as input parameters of neural networks to identify fault patterns of roller bearings. The experimental results show that the approach can identify working conditions and fault types of roller bearings.
Keywords:empirical mode decomposition(EMD)  multiple characteristic parameter  probabilistic neural network  fault diagnosis  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国机械工程》浏览原始摘要信息
点击此处可从《中国机械工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号