首页 | 本学科首页   官方微博 | 高级检索  
     


Improvement of ethanol production in Saccharomyces cerevisiae by hetero‐expression of GAPN and FPS1 deletion
Authors:Pin‐Mei Wang  Dao‐Qiong Zheng  Rui Ding  Xiao‐Qin Chi  Xiang‐Lin Tao  Hang Min  Xue‐Chang Wu
Affiliation:College of Life Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, PR China
Abstract:BACKGROUND: During anaerobic bioethanol fermentation of Saccharomyces cerevisiae, the main byproduct glycerol is essential to regulate redox balance (reoxidize NADH to NAD+), which is necessary to maintain cell growth and fermentation. Hetero‐expression of a NADP+‐dependent glyceraldehydes‐3‐phosphate dehydrogenase (GAPN) EC.1.2.1.9] in S. cerevisiae could redirect the carbon flux from glycerol to ethanol involving a net oxidation of NADH. The present study investigates whether combination of GAPN hetero‐expression and glycerol exporter Fps1p disruption would result in less glycerol and more ethanol production without affecting growth rate during anaerobic fermentations. RESULTS: The results of anaerobic fermentations showed that the fps1Δ mutant with GAPN (named 4FG) produced 21.47% less glycerol and 9.18% more ethanol compared with a parental strain with a control plasmid, while the rates of growth and fermentation were not changed. Moreover, the engineered strain 4FG yielded less glycerol and acetic acid, and more ethanol than the control, fps1Δ mutant or with GAPN only. CONCLUSIONS: During anaerobic fermentations, hetero‐expression of GAPN restored the reduced grow rate of the fps1Δ mutant, and led to less byproducts and more ethanol production. This combination strategy could be used to modulate glycerol metabolism and optimize the anaerobic fermentation of S. cerevisiae. Copyright © 2011 Society of Chemical Industry
Keywords:ethanol  FPS1  glycerol  glyceraldehydes‐3‐phosphate dehydrogenase  Saccharomyces cerevisiae  Streptococcus mutans
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号