首页 | 本学科首页   官方微博 | 高级检索  
     


Efficient biosorption of a reactive dye from contaminated media by Neurospora sitophila cells—Zea mays silk tissue biomass system
Authors:Tamer Akar  Sema Celik
Affiliation:1. Department of Chemistry, Faculty of Arts and Science, Eski?ehir Osmangazi University, 26480, Eski?ehir, Turkey;2. Department of Chemistry, Graduate School of Natural and Applied Sciences, Eski?ehir Osmangazi University, 26480, Eski?ehir, Turkey
Abstract:BACKGROUND: A filamentous fungus Neurospora sitophila was immobilized in Zea mays silk tissue and the prepared system was employed as a new biosorbent for the treatment of reactive dye contaminated solutions. RESULTS: Decolorization potential of the biosorbent system was investigated in batch and continuous mode operations. Design parameters such as pH, biomass dosage, contact time, temperature, dye concentration and flow rate were investigated. Batch mode equilibrium data were analyzed kinetically to determine the rate constants. The process followed the pseudo‐second‐order kinetic model. The thermodynamics of the biosorption indicated the spontaneous and endothermic nature of the process. Biosorption was well described by the Langmuir isotherm model, with a maximum monolayer biosorption capacity of 105.33 mg g?1. Relatively good dynamic flow decolorization potential was observed for the biosorbent system in synthetic and real wastewater conditions. Flow mode regeneration studies over ten consecutive cycles indicated that the suggested biosorbent maintained consistently high biosorption yield, above 70%. The possible dye‐biosorbent interaction mechanism was also confirmed by zeta potential, FTIR, SEM and EDX analysis. CONCLUSION: High biosorption capacity and regeneration potential suggest that the new biosorbent system can be used as an alternative and low‐cost biomaterial for the treatment of reactive dye contaminated solutions. Copyright © 2011 Society of Chemical Industry
Keywords:Neurospora sitophila  biosorbent system  isotherms  kinetics  regeneration
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号