首页 | 本学科首页   官方微博 | 高级检索  
     


Phosphorus Enhanced Intermolecular Interactions of SnO2 and Graphene as an Ultrastable Lithium Battery Anode
Authors:Lei Zhang  Kangning Zhao  Ruohan Yu  Mengyu Yan  Wangwang Xu  Yifan Dong  Wenhao Ren  Xu Xu  Chunjuan Tang  Liqiang Mai
Affiliation:1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China;2. Deparment of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, USA;3. Department of Chemistry, University of California, Berkeley, CA, USA
Abstract:SnO2 suffers from fast capacity fading in lithium‐ion batteries due to large volume expansion as well as unstable solid electrolyte interphase. Herein, the design and synthesis of phosphorus bridging SnO2 and graphene through covalent bonding are demonstrated to achieve a robust structure. In this unique structure, the phosphorus is able to covalently “bridge” graphene and tin oxide nanocrystal through P? C and Sn? O? P bonding, respectively, and act as a buffer layer to keep the structure stable during charging–discharging. As a result, when applied as a lithium battery anode, SnO2@P@GO shows very stable performance and retains 95% of 2nd capacity onward after 700 cycles. Such unique structural design opens up new avenues for the rational design of other high‐capacity materials for lithium battery, and as a proof‐of‐concept, creates new opportunities in the synthesis of advanced functional materials for high‐performance energy storage devices.
Keywords:covalent bonding  graphene  lithium‐ion battery  SnO2  ultrastable anode
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号