首页 | 本学科首页   官方微博 | 高级检索  
     


Efficient Catalysis of Hydrogen Evolution Reaction from WS2(1−x)P2x Nanoribbons
Authors:Tofik Ahmed Shifa  Fengmei Wang  Kaili Liu  Zhongzhou Cheng  Kai Xu  Zhenxing Wang  Xueying Zhan  Chao Jiang  Jun He
Affiliation:1. CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, China;2. University of Chinese Academy of Sciences, Beijing, China;3. University of Science and Technology Beijing (USTB), Beijing, China;4. CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, China
Abstract:The rational design of Earth abundant electrocatalysts for efficiently catalyzing hydrogen evolution reaction (HER) is believed to lead to the generation of carbon neutral energy carrier. Owing to their fascinating chemical and physical properties, transition metal dichalcogenides (TMDs) are widely studied for this purpose. Of particular note is that doping by foreign atom can bring the advent of electronic perturbation, which affects the intrinsic catalytic property. Hence, through doping, the catalytic activity of such materials could be boosted. A rational synthesis approach that enables phosphorous atom to be doped into WS2 without inducing phase impurity to form WS2(1? x )P2 x nanoribbon (NRs) is herein reported. It is found that the WS2(1? x )P2 x NRs exhibit considerably enhanced HER performance, requiring only ?98 mV versus reversible hydrogen electrode to achieve a current density of ?10 mA cm?2. Such a high performance can be attributed to the ease of H‐atom adsorption and desorption due to intrinsically tuned WS2, and partial formation of NRs, a morphology wherein the exposure of active edges is more pronounced. This finding can provide a fertile ground for subsequent works aiming at tuning intrinsic catalytic activity of TMDs.
Keywords:doping  electronic perturbation  hydrogen evolution  nanoribbons  WS2(1−  x)P2x
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号