首页 | 本学科首页   官方微博 | 高级检索  
     


An investigation into the effects of probing and wire bonding stress on the reliability of BOAC
Authors:K.M. Chen   B.C. Wu   K.H. Tang   F.Y. Cheng   N.H. Kao  J.Y. Lai
Affiliation:aUnited Microelectronic Corporation, No. 3, Li-Hsin Rd. II, Hsinchu Science Park, Hsinchu 300, Taiwan, ROC;bSiliconware Precision Industries Co., Ltd, No. 123, Da-Fong Rd, Sec. 3, Tantzu, Taichung 427, Taiwan, ROC
Abstract:This work describes two types of low stress bonding over active circuit (BOAC) structures applying a finite element analysis. The advantage of improving the chip area utility of the BOAC design is approximately 150–180 μm for each dimension. A 0.13 μm 2 Mb high-speed SRAM with fluorinated silicate glass (FSG) low-k dielectric was combined with these two BOAC structures as the test vehicles to evaluate the impact of the probing and wire bonding stress on the reliability. Initially, a cantilevered probe card was applied to probe the BOAC pads using the typical and the worse probing conditions. Before and after the circuits probing (CP1 and CP2) the experimental results were compared, including the 2 Mb high-speed SRAM yield and wafer bit map data. The difference between the CP1 and CP2 results were negligible for all probing split cells. Next, the cross-section of the BOAC pad under the probing area was investigated following the worst probing condition. In addition, the BOAC pads evaluate the bondability, including the use of ball shear, wire pull and cratering tests. Moreover, all BOAC packaging samples underwent reliability tests, including HTOL, TCT, TST, and HTST. All the bondability and reliability tests passed the criteria for both proposed BOAC structures. Finally, the immunity level of both proposed BOAC pads, for ESD-HBM (human body mode) and ESD-MM (machine mode), differed slightly from the normal pads. No performance degradation was detected. Accordingly, this work shows that both proposed BOAC structures can be used to improve the active chip area utility or save the chip area.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号