首页 | 本学科首页   官方微博 | 高级检索  
     


Reduction of Permutation-Invariant Polynomials: A Noncommutative Case Study
Authors:Manfred G  bel,Heinz Kredel
Affiliation:Dettenbachstraße 16, Neukirchen vorm Wald, 94154, Germanyf1;Universität Mannheim, Rechenzentrum, Mannheim, 68131, Germany, f2
Abstract:Let R be a commutative ring with 1, let Rleft angle bracketX1,…,Xnright-pointing angle bracket/I be the polynomial algebra in the n≥4 noncommuting variables X1,…,Xn over R modulo the set of commutator relations I={(X1+···+Xn)*Xi=Xi*(X1+···+Xn)|1≤in}. Furthermore, let G be an arbitrary group of permutations operating on the indeterminates X1,…,Xn, and let Rleft angle bracketX1,…,Xnright-pointing angle bracket/IG be the R-algebra of G-invariant polynomials in Rleft angle bracketX1,…,Xnright-pointing angle bracket/I. The first part of this paper is about an algorithm, which computes a representation for any fset membership, variantRleft angle bracketX1,…,Xnright-pointing angle bracket/IG as a polynomial in multilinear G-invariant polynomials, i.e., the maximal variable degree of the generators of Rleft angle bracketX1,…,Xnright-pointing angle bracket/IG is at most 1. The algorithm works for any ring R and for any permutation group G. In addition, we present a bound for the number of necessary generators for the representation of all G-invariant polynomials in Rleft angle bracketX1,…,Xnright-pointing angle bracket/IG with a total degree of at most d. The second part contains a first but promising analysis of G-invariant polynomials of solvable polynomial rings.
Keywords:Abbreviations: noncommutative invariant theoryAbbreviations: polynomial invariantAbbreviations: permutation groupAbbreviations: generatorAbbreviations: degree boundAbbreviations: rewriting techniqueAbbreviations: solvable polynomial ring
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号