首页 | 本学科首页   官方微博 | 高级检索  
     

混合聚类彩色图像分割方法研究
引用本文:施海滨,周勇. 混合聚类彩色图像分割方法研究[J]. 计算机工程与应用, 2011, 47(9): 181-184. DOI: 10.3778/j.issn.1002-8331.2011.09.053
作者姓名:施海滨  周勇
作者单位:中国矿业大学 计算机科学与技术学院,江苏 徐州 221116
基金项目:国家自然科学基金,江苏省博士后科学基金资助项目,中国矿业大学科技基金资助项目
摘    要:提出了一种基于K-均值算法和EM算法混合聚类的彩色图像分割方法。首先将待分割的RGB彩色图像转化成YUV空间模型,然后将该图像分割成n小块,对每个块的颜色分量用改进的K-均值聚类算法进行聚类分析,最后用EM聚类算法对每个块进行聚类,分割源图像。对K-均值算法和EM算法的初始聚类中心引进了改进算法,加快了算法的收敛速度。并与相似的分割方法进行了比较实验,给出了详细的实验结果与分析。实验表明该方法分割速度快,效果好,具有较高的实用价值。

关 键 词:图像分割  期望最大化(EM)算法  K-均值算法  YUV颜色空间  
修稿时间: 

Research for color image segmentation based on hybrid clustering
SHI Haibin,ZHOU Yong. Research for color image segmentation based on hybrid clustering[J]. Computer Engineering and Applications, 2011, 47(9): 181-184. DOI: 10.3778/j.issn.1002-8331.2011.09.053
Authors:SHI Haibin  ZHOU Yong
Affiliation:School of Computer Science and Technology,China University of Mining and Technology,Xuzhou,Jiangsu 221116,China
Abstract:A new color image segmentation algorithm is introduced based on hybrid clustering including K-means algorithm and EM algorithm,which firstly converts RGB color image into YUV-Space model,and then divides the whole image to n-blocks,clusters the color components of each block with K-means improved in this paper,and finally,segments the source image by clustering each block with EM clustering algorithm.In this paper,a new method is proposed to set initial cluster centers in K-means algorithm and EM algorithm,accelerates the convergence speed.The experiment results and the comparison results with similar approach are provided.Experiment results show the proposed algorithm is effective and has high practical value.
Keywords:image segmentation  Expectation-Maximization(EM) algorithm  K-means algorithm  YUV color space
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号