首页 | 本学科首页   官方微博 | 高级检索  
     

基于GRNN网络的中厚板轧制温度的预测
作者姓名:孟令启  雷明杰  王建勋  吴浩亮
作者单位:郑州大学机械工程学院,河南,郑州,450001
摘    要: 针对中厚板轧机控制模型中的轧制温度精度的提高问题,以4200轧机轧制的大量实测数据为基础,利用Matlab人工神经网络工具箱,建立了中厚板轧制温度的GRNN神经网络预测模型。通过分析影响钢板温度变化的各种因素,调整神经网络的光滑因子,确定了最佳的网络结构形式,提高了模型的预测精度,并与传统的BP神经网络模型相比较。结果表明,GRNN网络具有更高的精度和更好的泛化能力。该神经网络模型可应用于中厚板轧制温度的预测,也可为人工神经网络在其它自动控制方面的应用提供参考。

关 键 词:中厚板轧制  轧制温度  GRNN神经网络
收稿时间:1900-01-01;
本文献已被 万方数据 等数据库收录!
点击此处可从《钢铁研究学报》浏览原始摘要信息
点击此处可从《钢铁研究学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号