首页 | 本学科首页   官方微博 | 高级检索  
     


The capacity credit of micro-combined heat and power
Authors:AD Hawkes  MA Leach
Affiliation:1. Centre for Energy Policy and Technology, Imperial College London, Exhibition Road, London SW7 2AZ, UK;2. Centre for Environmental Strategy, Faculty of Engineering, University of Surrey, Guildford GU2 7XH, UK
Abstract:This article is concerned with development of a methodology to determine the capacity credit of micro-combined heat and power (micro-CHP), and application of the method for the UK. Capacity credit is an important parameter in electricity system planning because it measures the amount of conventional generation that would be displaced by an alternative technology. Firstly, a mathematical formulation is presented. Capacity credit is then calculated for three types of micro-CHP units—Stirling engine, internal combustion engine, and fuel cell systems—operating under various control strategies. It is found that low heat-to-power ratio fuel cell technologies achieve the highest capacity credit of approximately 85% for a 1.1 GW penetration when a heat-led control strategy is applied. Higher heat-to-power ratio Stirling engine technology achieves approximately 33% capacity credit for heat-led operation. Low heat-to-power ratio technologies achieve higher capacity credit because they are able to continue operating even when heat demand is relatively low. Capacity credit diminishes as penetration of the technology increases. Overall, the high capacity credit of micro-CHP contributes to the viewpoint that the technology can help meet a number of economic and environmental energy policy aims.
Keywords:Capacity credit  Cogeneration  Micro-CHP
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号