首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanisms for Silanol Formation on Amorphous Silica Fracture Surfaces
Authors:Andrew S. D'Souza   Carlo G. Pantano
Affiliation:Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
Abstract:Amorphous SiO2fracture surfaces created under different partial pressures of water vapor ( p H2O) were analyzed using temperature-programmed static secondary ion mass spectroscopy. The results were used to develop an atomistic model for the formation of a fracture surface. It was found that substantial reconstruction of the SiO2fracture surface took place immediately after the fracture event. Formation of the fracture surface was modeled as three individual steps-rupture of Si-O-Si bonds to form dangling Si* and Si-O* bonds, reconstruction and relaxation of the surface to form both strained and unstrained siloxane bonds, and, lastly, reaction of H2O molecules with strained siloxane bonds to form surface silanol groups. The final concentration of surface silanol groups was found to have only a weak dependence on the p H2O in the ambient atmosphere during the fracture process. It was also found that the number of strained siloxane bonds on the SiO2fracture surface could be substantially reduced by heat treatment of the glass under vacuum.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号