High-speed mass analysis of whole erythrocytes by charge-detection quadrupole ion trap mass spectrometry |
| |
Authors: | Nie Zongxiu Cui Fenping Tzeng Yan-Kai Chang Huan-Cheng Chu Minglee Lin Huan-Chang Chen Chung-Hsuan Lin Hsin-Hung Yu Alice L |
| |
Affiliation: | Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan. |
| |
Abstract: | Herein, we report an application of charge-detection quadrupole ion trap mass spectrometry to the measurement of total dry masses of mammalian and poultry erythrocytes evaporated/ionized by laser-induced acoustic desorption. The method is rapid and widely applicable. Eight different types of red blood cells (RBCs) have been successfully analyzed, including those of human, goat, cow, mouse, pig, and chicken. The measured mean masses (weights per corpuscle) range from 0.58 x 10(13) Da (9.6 pg) of goat RBCs to 2.80 x 10(13) Da (46.5 pg) of chicken RBCs. The total dry weights determined for human RBCs from a healthy male adult, a patient with iron-deficiency anemia, and a patient with thalassemia are 34.8, 28.8, and 20.6 pg, respectively. These weights, except that of thalassemia, are all approximately 10% higher than their corresponding mean corpuscular hemoglobin values determined by a commercial automated hematology analyzer. The mass distribution profiles of the cells are all near-Gaussian, with a standard deviation of 15% for the normal human RBCs. The deviation increases significantly to 20% for RBCs with thalassemia characteristics and 27% for RBCs with iron-deficiency anemia characteristics. All the observations are in accord with their corresponding mean corpuscular volume measurements, indicating an increase in anisocytosis (variation in RBC size) in the anemic samples. Our results suggest a broad and promising application of this new technology to high-speed mass analysis of RBCs and other biological whole cells as well. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|