首页 | 本学科首页   官方微博 | 高级检索  
     

多传感器时滞系统信息融合最优Kalman滤波器
引用本文:孙书利,吕 楠,白锦花,陈 卓. 多传感器时滞系统信息融合最优Kalman滤波器[J]. 控制理论与应用, 2008, 25(3): 501-505
作者姓名:孙书利  吕 楠  白锦花  陈 卓
作者单位:黑龙江大学电子工程学院自动化系,黑龙江,哈尔滨,150080;黑龙江大学电子工程学院自动化系,黑龙江,哈尔滨,150080;黑龙江大学电子工程学院自动化系,黑龙江,哈尔滨,150080;黑龙江大学电子工程学院自动化系,黑龙江,哈尔滨,150080
基金项目:国家自然科学基金,黑龙江省杰出青年科学基金,黑龙江省高等学校骨干教师资助计划,黑龙江大学校科研和教改项目
摘    要:基于线性最小方差最优加权融合估计算法,对多传感器的离散线性状态时滞随机系统,给出了一种非增广分布式加权融合最优Kalman滤波器.推导了状态时滞系统任两个传感器子系统之间的滤波误差互协方差阵的计算公式.它与状态增广加权融合滤波器具有相同的精度.与每个传感器的局部滤波器相比,分布式融合滤波器具有更高的精度.与状态和观测增广最优滤波器相比,具有较小的精度.但避免了增广所带来的高维计算和大的空间存储,可减小计算负担.仿真例子验证了其有效性.

关 键 词:状态时滞系统  多传感器  信息融合  最优Kalman滤波器
收稿时间:2006-09-04
修稿时间:2007-05-15

Multi-sensor information fusion optimal Kalman filter for time-delay systems
SUN Shu-li,LU Nan,BAI Jin-hua and CHEN Zhuo. Multi-sensor information fusion optimal Kalman filter for time-delay systems[J]. Control Theory & Applications, 2008, 25(3): 501-505
Authors:SUN Shu-li  LU Nan  BAI Jin-hua  CHEN Zhuo
Affiliation:Automation Department, College of Electronics Engineering, Heilongjiang University, Harbin Heilongjiang 150080, China;Automation Department, College of Electronics Engineering, Heilongjiang University, Harbin Heilongjiang 150080, China;Automation Department, College of Electronics Engineering, Heilongjiang University, Harbin Heilongjiang 150080, China;Automation Department, College of Electronics Engineering, Heilongjiang University, Harbin Heilongjiang 150080, China
Abstract:Based on the optimal weighted fusion estimation algorithm with minimum variance,a non-augmentation dis- ributed weighted fusion optimal Kalman filter is given for discrete linear state time-delay stochastic systems with multiple sensors.The cross-covariance matrix of filtering errors between any two-sensor subsystems is derived for state time-delay systems.It has the same accuracy with weighted fusion filter with state augmentation.Compared with local filter based on each sensor,the distributed fusion filter has higher accuracy.Compared with the optimal filter with state and measurement augmentation,it has lower accuracy,but avoids the high-dimension computation and the large memory by augmentation, and has the reduced computational burden.A simulation example also shows its effectiveness.
Keywords:state time-delay system  multisensor  information fusion  optimal Kalman filter
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《控制理论与应用》浏览原始摘要信息
点击此处可从《控制理论与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号