首页 | 本学科首页   官方微博 | 高级检索  
     


Corrosion behavior of steel under wet and dry cycles containing Cr ion
Authors:T Kamimura  S Nasu  T Tazaki  H Miyuki
Affiliation:a Corporate Research and Development Laboratories, Sumitomo Metal Industries Ltd., 1-8 Fuso-cho Amagasaki, Hyogo 660-0891, Japan
b Division of Materials Physics, Department of Physical Science, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
Abstract:The corrosion behavior of mild steel has been investigated during the wet and dry cyclic transitions containing Cr3+ ion added as sulfate in order to gain a better understanding of the influence of Cr on the atmospheric corrosion of steels. The corrosion rate during drying is greatly suppressed by the existence of Cr3+ ion in the electrolyte covered with the surface. Lower corrosion rates are observed during drying even if the surface have been polarized to negative potentials below −200 mVSHE during the wet corrosion conditions in which the surface-covered electrolyte contains Cr3+ ion. This corrosion behavior is identical to the case of Cr-containing steel for the wet and dry cyclic transitions without the addition of Cr3+ ion. The composition of rust layer after the wet and dry cyclic transitions is composed of α-FeOOH, γ-FeOOH and Fe3−δO4 for both cases of non-Cr3+ and Cr3+-containing condition, and no significant difference in the mass fraction of the above rust substances between two conditions is observed by means of Mössbauer spectroscopy. The only difference in the rust layer is that the rust formed under the wet and dry cyclic transitions containing Cr3+ ion contains a certain amount of Cr near the steel/rust interface. Those results suggest that the role of Cr during the wet and dry cyclic transitions is the inhibition of the rust reduction and the formation of Fe2+-state intermediate by the existence of Cr in the rust layer. This can lead to the inhibition of the oxygen reduction during drying.
Keywords:C  Atmospheric corrosion  A  Mild steel  Kelvin probe  C  Rust  B    ssbauer spectroscopy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号