首页 | 本学科首页   官方微博 | 高级检索  
     


Blind Decomposition of Transmission Light Microscopic Hyperspectral Cube Using Sparse Representation
Abstract: In this paper, we address the problem of fully automated decomposition of hyperspectral images for transmission light microscopy. The hyperspectral images are decomposed into spectrally homogeneous compounds. The resulting compounds are described by their spectral characteristics and optical density. We present the multiplicative physical model of image formation in transmission light microscopy, justify reduction of a hyperspectral image decomposition problem to a blind source separation problem, and provide method for hyperspectral restoration of separated compounds. In our approach, dimensionality reduction using principal component analysis (PCA) is followed by a blind source separation (BSS) algorithm. The BSS method is based on sparsifying transformation of observed images and relative Newton optimization procedure. The presented method was verified on hyperspectral images of biological tissues. The method was compared to the existing approach based on nonnegative matrix factorization. Experiments showed that the presented method is faster and better separates the biological compounds from imaging artifacts. The results obtained in this work may be used for improving automatic microscope hardware calibration and computer-aided diagnostics.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号