首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习的杆塔接地网断点诊断方法研究
引用本文:孙绍珩,鲁彩江,曹中清,刘子轩,江雪玲,李林峰. 基于深度学习的杆塔接地网断点诊断方法研究[J]. 电子测量与仪器学报, 2021, 35(10): 168-175. DOI: 10.13382/j.jemi.B2104014
作者姓名:孙绍珩  鲁彩江  曹中清  刘子轩  江雪玲  李林峰
作者单位:西南交通大学机械工程学院 成都610031;西南交通大学机械工程学院 成都610031;先进驱动节能技术教育部工程研究中心 成都610031;轨道交通运维技术与装备四川省重点实验室 成都610031
基金项目:国家自然科学基金(61801402)、四川省杰出青年科技人才项目(2020JDJQ0038)、中央高校基本科研业务费(2682020CX26)项目资助
摘    要:在使用电磁感应方法诊断杆塔接地网断点的过程中,针对人工诊断引起的误差问题,提出了一种基于一维卷积神经网络(one dimensional-eonvolutional neural network,1D-CNN)的诊断模型,诊断模型以接地网正上方的一维磁场数据为输入,通过深度神经网络输出断点故障的数量和位置.首先通过实验...

关 键 词:电磁感应方法  杆塔接地网  卷积神经网络  断点故障诊断

Research on diagnosis method of tower grounding gridbreakpoints based on deep learning
Sun Shaoheng,Lu Caijiang,Cao Zhongqing,Liu Zixuan,Jiang Xueling,Li Linfeng. Research on diagnosis method of tower grounding gridbreakpoints based on deep learning[J]. Journal of Electronic Measurement and Instrument, 2021, 35(10): 168-175. DOI: 10.13382/j.jemi.B2104014
Authors:Sun Shaoheng  Lu Caijiang  Cao Zhongqing  Liu Zixuan  Jiang Xueling  Li Linfeng
Affiliation:1. School of Mechanical Engineering, Southwest Jiaotong University;1. School of Mechanical Engineering, Southwest Jiaotong University,2. Engineering Research Center of Advanced Drive Energy Saving Technologies, Ministry of Education,3. Technology and Equipment of Rail Transit Operation and Maintenance Key Laboratory of Sichuan Province
Abstract:In the process of using electromagnetic induction method to diagnose the breakpoint of the grounding grid of the tower, aimingat the error caused by manual diagnosis, this paper proposes a diagnosis model based on one dimensional-convolutional neural network(1D-CNN), the diagnosis model takes the one-dimensional magnetic field data directly above the grounding grid as input, and outputsthe number and location of breakpoint faults through a deep neural network. This paper firstly verified the effectiveness of electromagneticinduction method in the diagnosis of tower grounding grid breakpoints through experiment, then a magnetic field breakpoint fault datasetwas established and a 1D-CNN diagnosis model was trained. In the diagnostic accuracy verification experiment, the diagnostic modelreached 97. 50% diagnostic accuracy on 40 faulty magnetic field samples, showing good generalization. The comparison experiment of thediagnosis effect shows that the AUC value of the 1D-CNN diagnosis model reaches 0. 951, the average recognition rate of various faults inthree random trainings reaches 92. 08%, and the average test set accuracy in 15 trainings reaches 94. 30%. and the average training timeper generation is 0. 875 0 s, which has obvious advantages over DNN and RNN in various indicators.
Keywords:electromagnetic induction method   tower grounding grid   convolutional neural network   breakpoint fault diagnosis
本文献已被 万方数据 等数据库收录!
点击此处可从《电子测量与仪器学报》浏览原始摘要信息
点击此处可从《电子测量与仪器学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号