首页 | 本学科首页   官方微博 | 高级检索  
     


Quantitative microfluidic separation of DNA in self-assembled magnetic matrixes
Authors:Minc Nicolas  Fütterer Claus  Dorfman Kevin D  Bancaud Aurélien  Gosse Charlie  Goubault Cécile  Viovy Jean-Louis
Affiliation:Laboratoire Physicochimie-Curie, UMR/CNRS 168, Institut Curie, 26 Rue d'Ulm, 75248 Paris Cedex 5, France.
Abstract:We present an experimental study of the microfluidic electrophoresis of long DNA in self-assembling matrixes of magnetic bead columns. Results are presented for the rapid separation of lambda-phage, 2lambda-DNA, and bacteriophage T4 DNA, where separation resolutions greater than 2 between lambda and T4 are achieved in times as short as 150 s. The use of a computer-piloted flow control system and injection results in high reproducibility between separations. We compare the experimentally measured mobility and dispersion with an exactly solvable lattice Monte Carlo model. The theory predicts that the mean velocity scales linearly with the field, the band broadening scales with the inverse of the field, and the resolution is independent of the field for intermediate fields-all of which are in accord with the experimental results. Moreover, reasonable quantitative agreement is achieved for band broadening for longer DNA (2lambda and T4) when the average postengagement time is measured experimentally. This work demonstrates the possibility of achieving fast microfluidic separation of large DNA on a routine basis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号