首页 | 本学科首页   官方微博 | 高级检索  
     

基于稀疏表示的人脸姿态估计研究
引用本文:廖海斌,丘益鸣,陈庆虎. 基于稀疏表示的人脸姿态估计研究[J]. 电视技术, 2015, 39(13): 40-44
作者姓名:廖海斌  丘益鸣  陈庆虎
作者单位:1. 湖北科技学院计算机科学与技术学院,湖北咸宁,437100
2. 武汉大学电子信息学院,湖北武汉,430072
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目)
摘    要:针对人脸光照、遮挡、身份、表情等因素变化的人脸姿态估计难题,结合稀疏表示分类(SRC)方法的优秀识别性能,对SRC理论进行了深入分析,并将其应用于人脸姿态分类.为了解决姿态估计中人脸光照、噪声和遮挡变化问题,将人脸姿态离散化为不同的子空间,每个子空间对应一个类别,据此,提出基于字典学习与稀疏约束的人脸姿态识别方法.通过在公开的XJTU和PIE人脸库上实验表明:所研究的方法对人脸光照、噪声和遮挡变化具有鲁棒性.

关 键 词:人脸姿态估计  稀疏表示  子空间学习  人脸识别
收稿时间:2014-10-21
修稿时间:2014-12-12

Face poses estimation based on sparse representation
Liao haibin,QIU Yiming and CHEN Qinghu. Face poses estimation based on sparse representation[J]. Ideo Engineering, 2015, 39(13): 40-44
Authors:Liao haibin  QIU Yiming  CHEN Qinghu
Affiliation:HuBei University of Science and Technology,Wuhan University,Wuhan University
Abstract:According to the challenges in face pose estimation under different illuminations, occlusions, identity, expressions, and so on. In combination with the excellent classification performance of sparse representation classification (SRC), this paper makes a deep analysis on the theory of SRC, and its application in face pose classification. In order to handle challenges such as variation of face illumination, noises and occlusion, in this paper, we present a robust face pose estimation method based on dictionary learning and sparse representation. In which face poses are discrete into different subspaces, each subspace corresponding to a class. Several experiments are performed on XJTU and PIE databases. Recognition results show that the proposed method is suitable for efficient face pose recognition under illumination, noises and occlusion variations.
Keywords:Face pose estimation   sparse representation   subspace learning   face recognition
本文献已被 万方数据 等数据库收录!
点击此处可从《电视技术》浏览原始摘要信息
点击此处可从《电视技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号