首页 | 本学科首页   官方微博 | 高级检索  
     

湿法提钒浸出段搅拌反应器结构的优化
引用本文:刘作华,周政霖,朱俊,刘仁龙,陶长元,王运东,彭毅. 湿法提钒浸出段搅拌反应器结构的优化[J]. 化工进展, 2015, 34(5): 1241. DOI: 10.16085/j.issn.1000-6613.2015.05.010
作者姓名:刘作华  周政霖  朱俊  刘仁龙  陶长元  王运东  彭毅
作者单位:1. 重庆大学化学化工学院, 重庆 400044;2. 清华大学化学工程系, 北京 100084;3. 攀钢集团公司攀枝花钢铁 研究院有限公司, 四川 攀枝花 617000
基金项目:国家重点基础研究发展计划(973计划),清华大学化学工程联合国家重点实验室开放课题,重庆市自然科学基金重点项目(CSTC2012JJB0006)。
摘    要:清洁提钒工艺中,熟料的湿法浸出是重要的操作单元.浸出搅拌反应器的合理设计与优化,可缩短浸矿时间以及提高浸矿效率.本文通过改变搅拌桨桨叶间的层间距、搅拌桨的安装层数以及安装导流筒等方法,对攀钢集团公司的浸出搅拌反应器进行优化和改进;并结合计算流体动力学(CFD)Fluent商业软件,分别模拟了原浸出搅拌反应器和改进后浸出搅拌反应器的宏观流场结构.结果表明:在层间距C2为1100mm的原双层搅拌桨浸出搅拌反应器内,流体轴向速度较小,“死区”现象较严重;与原反应器相比,调整双层搅拌桨桨叶之间的层间距C2为1800mm以及安装3层搅拌桨或导流筒,都可加强反应器内流体的轴向流动,减小“死区”范围,进而改善流场结构的均匀分布,有助于强化流体混合.

关 键 词:搅拌槽  优化  计算流体动力学  流动  混合  
收稿时间:2014-09-29

Optimization of stirred reactor in leaching process for extractive hydrometallurgy of vanadium
LIU Zuohua,ZHOU Zhenglin,ZHU Jun,LIU Renlong,TAO Changyuan,WANG Yundong,PENG Yi. Optimization of stirred reactor in leaching process for extractive hydrometallurgy of vanadium[J]. Chemical Industry and Engineering Progress, 2015, 34(5): 1241. DOI: 10.16085/j.issn.1000-6613.2015.05.010
Authors:LIU Zuohua  ZHOU Zhenglin  ZHU Jun  LIU Renlong  TAO Changyuan  WANG Yundong  PENG Yi
Affiliation:1. School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China;
2. Department of Chemical Engineering, Tsinghua University, Beijing 100084, China;
3. Panzhihua Iron and Steel Institute Limited Company, Pangang Group Company, Panzhihua 617000, Sichuan, China
Abstract:Leaching stirred reactor is one of the important unit in leaching process. Reactor with reasonable optimization design contributes to leaching time reduction and leaching efficiency improvement. The leaching stirred reactor of Pangang Group Company was optimized by adjusting blade layer spacing,changing impeller installation layers or installing draft tube. The macroscopic flow structure was simulated for original and improved leaching stirred reactor with computational fluid dynamics(CFD) software Fluent. Results showed that the original double-impeller reactor with layer spacing C2 at 1100mm contributed to small fluid axial velocity and serious “dead zone” phenomenon. The spacing C2 in the double-impeller layer was adjusted to 1800mm and a three-impeller or draft tube was installed. Compared with the original reactor,the above improvement could contribute to fluid axial flow strengthening,“dead zone” areas reduction,flow structure variation improvement and fluid mixing efficiency enhancement.
Keywords:stirred vessel  optimization  computational fluid dynamics  flow  mixing
本文献已被 万方数据 等数据库收录!
点击此处可从《化工进展》浏览原始摘要信息
点击此处可从《化工进展》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号