首页 | 本学科首页   官方微博 | 高级检索  
     


Atomistic simulations of diffusional creep in a nanocrystalline body-centered cubic material
Affiliation:1. Materials Sciences Department, Idaho National Laboratory, Idaho Falls, ID 83415, USA;2. National Institute of Aerospace, Hampton, VA 23693, USA
Abstract:Molecular dynamics (MD) simulations are used to study diffusion-accommodated creep deformation in nanocrystalline molybdenum, a body-centered cubic metal. In our simulations, the microstructures are subjected to constant-stress loading at levels below the dislocation nucleation threshold and at high temperatures (i.e., T > 0.75Tmelt), thereby ensuring that the overall deformation is indeed attributable to atomic self-diffusion. The initial microstructures were designed to consist of hexagonally shaped columnar grains bounded by high-energy asymmetric tilt grain boundaries (GBs). Remarkably the creep rates, which exhibit a double-exponential dependence on temperature and a double power-law dependence on grain size, indicate that both GB diffusion in the form of Coble creep and lattice diffusion in the form of Nabarro–Herring creep contribute to the overall deformation. For the first time in an MD simulation, we observe the formation and emission of vacancies from high-angle GBs into the grain interiors, thus enabling bulk diffusion.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号