基于全序列比对相似度的用户会话自动谱聚类 |
| |
引用本文: | 姜大庆 周勇. 基于全序列比对相似度的用户会话自动谱聚类[J]. 计算机科学, 2012, 39(11): 142-144 |
| |
作者姓名: | 姜大庆 周勇 |
| |
作者单位: | (中国矿业大学计算机科学与技术学院 徐州 221008) (南通农业职业技术学院信息工程系 南通 226007) |
| |
摘 要: | 针对现有个性化推荐服务系统中用户会话聚类算法存在相似性度量准确性低和需要事先确定聚类数目的问题,对序化的用户访问页面和对应的访问时间信息进行整合,提出一种基于动态规划算法的全序列比对方法来度量用户会话的相似性。在此基础上,运用改进的NJ W谱聚类算法对用户会话进行自动谱聚类。实验结果表明,算法充分考虑了用户会话的整体特征和局部信息,较相关比对算法具有更高的聚类性能,可以提高网站个性化推荐服务的效率。
|
关 键 词: | 全序列比对,相似度,用户会话,谱聚类,自动聚类 |
Automatic Spectral Clustering of User Sessions Based on the Similarity of Global Alignment |
| |
Abstract: | Focusing on the problem of low accuracy of similarity measurement and necessarily determining the numberof clustering in advance in clustering algorithms of user sessions in existing personalized recommendation services sys-tans, a global alignment method based on dynamic programming algorithm was proposed to measure similarity betweenuser sessions by integrating the information of serialized visiting pages and visiting times. On this basis,automatic spec-tral clustering was done on the user sessions by using improved NJW clustering algorithm. Experimental results showthat the algorithm achieves a higher clustering performance than the comparative algorithms by considering the overallcharacteristics and local information of user sessions. It can also improve the efficiency of Web personalized recommen-lotion services. |
| |
Keywords: | Global alignment Similarity User session Spectral clustering Automatic clustering |
|
| 点击此处可从《计算机科学》浏览原始摘要信息 |
|
点击此处可从《计算机科学》下载全文 |