首页 | 本学科首页   官方微博 | 高级检索  
     


Phase transition and mechanical properties of ZrNxOy thin films on AISI 304 stainless steel
Authors:Jia-Hong Huang  Tzu-Chun LinGe-Ping Yu
Affiliation:
  • Department of Engineering and System Science, National Tsing Hua University at Hsinchu, Taiwan
  • Abstract:ZrNxOy thin films were deposited on AISI 304 stainless steel (304SS) substrates by reactive magnetron sputtering. The specimens were produced by sputtering a Zr target at 500 °C and the reactive gasses were N2 and O2 at various flow rates (ranging from 0 to 2 sccm). The purpose of this study was to investigate the effect of oxygen flow rate on the phase transition and accompanying mechanical properties of the ZrNxOy thin films. The oxygen contents of the thin films increased significantly with increasing oxygen flow rate. X-ray diffraction (XRD) revealed that the characteristics of the films can be divided into three zones according to the major phase with increasing oxygen content: Zone I (ZrN), Zone II (Zr2ON2) and Zone III (m-ZrO2). The hardness of the ZrNxOy films decreased with increasing oxygen content due to the formation of the soft oxide phase. Modified XRD sin2ψ method was used to respectively measure the residual stresses of ZrN, Zr2ON2 and m-ZrO2 phases. The results showed that the residual stress in ZrN was relieved as the oxygen content increased, and Zr2ON2 and m-ZrO2 were the phases with lower residual stress. Compositional depth profiles indicated that there was a ZrO2 interlayer near the film/substrates interface for all samples except the mononitride ZrN specimen. Contact angle was used as an index to assess the wettability of the film on substrate. The contact angles of ZrN, Zr2ON2 and m-ZrO2 on stainless steel were indirectly measured using Owens-Wendt method. The results showed that ZrO2 possessed the lowest wettability on 304SS among the three ZrNxOy phases, indicating that the ZrO2 interlayer may account for the spallation of the ZrNxOy films after salt spray tests.
    Keywords:ZrNxOy film  Residual stress  Zr2ON2  Contact angle  Wettability
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号