首页 | 本学科首页   官方微博 | 高级检索  
     

基于DCT的时序数据相似性搜索
引用本文:崔振任亚洲王瑞. 基于DCT的时序数据相似性搜索[J]. 计算机应用, 2007, 27(5): 1232-1234
作者姓名:崔振任亚洲王瑞
作者单位:[1]华侨大学信息科学与工程学院,福建泉州362021 [2]山东政法学院司法信息系,山东济南250014 [3]厦门大学数学科学学院,福建厦门361005
摘    要:数据的高维度是造成时序数据相似性搜索困难的主要原因。最有效的解决方法是对时序数据进行维归约,然后对压缩后的数据建立空间索引。目前维归约的方法主要是离散傅立叶变换(DFT)和离散小波变换(DWT)。提出了一种新的方法,利用离散余弦变换(DCT)进行维归约,并在此基础上给出了对时序数据进行范围查询和近邻查询的相似性搜索方法。与基于DFT、DWT的搜索方法相比,该方法在理论分析和实验结果上都显示出较高的效率。

关 键 词:时间序列  离散余弦变换  范围查询  近邻查询
文章编号:1001-9081(2007)05-1232-03
收稿时间:2006-11-20
修稿时间:2006-11-202007-01-29

Similarity search over time series data using DCT
CUI Zhen,REN Ya-zhou,WANG Rui. Similarity search over time series data using DCT[J]. Journal of Computer Applications, 2007, 27(5): 1232-1234
Authors:CUI Zhen  REN Ya-zhou  WANG Rui
Affiliation:1. College of Information Science and Engineering, Huaqiao University, Quanzhou Fujian 362021, China; 2. Department of Law and Information, Shandong University Political Science and Law, Jinan Shandong 250014, China; 3. School of Mathematical Sciences, Xiamen University, Xiamen Fujian 361005, China
Abstract:High dimensionality is the main difficulty of similarity search over time-series data. The most promising solution involves performing dimensionality reduction on the data, then indexing the reduced data with a spatial method. Recently, two methods of dimensionality reductions have been proposed, DIrT and DWT. In this paper we proposed a new method, dimensionality reduction with DCT, and further provided the method of similarity search about range query and nearest neighbor query. Compared with those methods based on DFT and DWT, it is more efficient in theory and experiment.
Keywords:time series  Discrete Cosine Transform(DCT)  range query  nearest neighbor query
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号