首页 | 本学科首页   官方微博 | 高级检索  
     


Differentials-Based Segmentation and Parameterization for Point-Sampled Surfaces
Authors:Yong-Wei Miao  Jie-Qing Feng  Chun-Xia Xiao  Qun-Sheng Peng  A. R. Forrest
Affiliation:(1) State Key Laboratory of CAD & CG, Zhejiang University, Hangzhou, 310027, China;(2) College of Science, Zhejiang University of Technology, Hangzhou, 310032, China;(3) School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, U.K.
Abstract:Efficient parameterization of point-sampled surfaces is a flmdamental problem in the field of digital geometry processing.In order to parameterize a given point-sampled surface for minimal distance distortion,a differentials-based segmentation and parameterization approach is proposed in this paper.Our approach partitions the point-sampled geometry based on two criteria:variation of Euclidean distance between sample points,and angular difference between surface differential directions.According to the analysis of normal curvatures for some specified directions,a new projection approach is adopted to estimate the local surface differentials.Then a k-means clustering(k-MC)algorithm is used for partitioning the model into a set of charts based on the estimated local surface attributes.Finally,each chart is parameterized with a statistical method-multidimensional scaling(MDS)approach,and the parameterization results of all charts form an atlas for compact storage.
Keywords:computer graphics  point-sampled surface  segmentation  parameterization  k-means clustering  multidimensional scaling
本文献已被 维普 万方数据 SpringerLink 等数据库收录!
点击此处可从《计算机科学技术学报》浏览原始摘要信息
点击此处可从《计算机科学技术学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号