首页 | 本学科首页   官方微博 | 高级检索  
     


Computational complexity of real functions
Authors:Ker-I. Ko  Harvey Friedman
Affiliation:Department of Computer Science, University of Houston, Houston, TX 77004, U.S.A.;Department of Mathematics, The Ohio State University, Columbus, OH 43210, U.S.A.
Abstract:Recursive analysis, the theory of computation of functions on real numbers, has been studied from various aspects. We investigate the computational complexity of real functions using the methods of recursive function theory. Partial recursive real functions are defined and their domains are characterized as the recursively open sets. We define the time complexity of recursive real continuous functions and show that the time complexity and the modulus of uniform continuity of a function are closely related. We study the complexity of the roots and the differentiability of polynomial time computable real functions. In particular, a polynomial time computable real function may have a root of arbitrarily high complexity and may be nowhere differentiable. The concepts of the space complexity and nondeterministic computation are used to study the complexity of the integrals and the maximum values of real functions. These problems are shown to be related to the “P=?NP” and the “P=?PSPACE” questions.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号