首页 | 本学科首页   官方微博 | 高级检索  
     


Cationic Polymer Modified Mesoporous Silica Nanoparticles for Targeted siRNA Delivery to HER2+ Breast Cancer
Authors:Worapol Ngamcherdtrakul  Jingga Morry  Shenda Gu  David J Castro  Shaun M Goodyear  Thanapon Sangvanich  Moataz M Reda  Richard Lee  Samuel A Mihelic  Brandon L Beckman  Zhi Hu  Joe W Gray  Wassana Yantasee
Affiliation:1. Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA;2. PDX Pharmaceuticals, Lake Oswego, OR, USA
Abstract:In vivo delivery of siRNAs designed to inhibit genes important in cancer and other diseases continues to be an important biomedical goal. A new nanoparticle construct that is engineered for efficient delivery of siRNA to tumors is now described. The construct comprises a 47‐nm mesoporous silica nanoparticle core coated with a crosslinked polyethyleneimine–polyethyleneglycol copolymer, carrying siRNA against the human epidermal growth factor receptor type 2 (HER2) oncogene, and coupled to the anti‐HER2 monoclonal antibody (trastuzumab). The construct is engineered to increase siRNA blood half‐life, enhance tumor‐specific cellular uptake, and maximize siRNA knockdown efficacy. The optimized anti‐HER2 nanoparticles produce apoptotic death in HER2 positive (HER2+) breast cancer cells grown in vitro, but not in HER2 negative (HER2?) cells. One dose of the siHER2–nanoparticles reduces HER2 protein levels by 60% in trastuzumab‐resistant HCC1954 xenografts. Administration of multiple intravenous doses over 3 weeks significantly inhibits tumor growth (p < 0.004). The siHER2‐nanoparticles have an excellent safety profile in terms of blood compatibility and low cytokine induction, when exposed to human peripheral blood mononuclear cells. The construct can be produced with high batch‐to‐batch reproducibility and the production methods are suitable for large‐scale production. These results suggest that this siHER2‐nanoparticle is ready for clinical evaluation.
Keywords:cancer nanomedicine  breast cancer  mesoporous silica nanoparticles
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号