首页 | 本学科首页   官方微博 | 高级检索  
     


Tissue Adhesive Catechol‐Modified Hyaluronic Acid Hydrogel for Effective,Minimally Invasive Cell Therapy
Authors:Jisoo Shin  Jung Seung Lee  Changhyun Lee  Hyun‐Ji Park  Kisuk Yang  Yoonhee Jin  Ji Hyun Ryu  Ki Sung Hong  Sung‐Hwan Moon  Hyung‐Min Chung  Hee Seok Yang  Soong Ho Um  Jong‐Won Oh  Dong‐Ik Kim  Haeshin Lee  Seung‐Woo Cho
Affiliation:1. Department of Biotechnology, Yonsei University, Seodaemun‐gu, Seoul, South Korea;2. The Graduate School of Nanoscience and Technology, Department of Chemistry, Korea Advanced Institute of Science and Technology, Yuseong‐gu, Daejeon, South Korea;3. Department of Stem Cell Biology, Konkuk University School of Medicine, Gwangjin‐gu, Seoul, South Korea;4. Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Dongnam‐gu, Cheonan, South Korea;5. School of Chemical Engineering and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Jangan‐gu, Suwon, South Korea;6. Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam‐gu, Seoul, South Korea;7. Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
Abstract:Current hyaluronic acid (HA) hydrogel systems often cause cytotoxicity to encapsulated cells and lack the adhesive property required for effective localization of transplanted cells in vivo. In addition, the injection of hydrogel into certain organs (e.g., liver, heart) induces tissue damage and hemorrhage. In this study, we describe a bioinspired, tissue‐adhesive hydrogel that overcomes the limitations of current HA hydrogels through its improved biocompatibility and potential for minimally invasive cell transplantation. HA functionalized with an adhesive catecholamine motif of mussel foot protein forms HA‐catechol (HA‐CA) hydrogel via oxidative crosslinking. HA‐CA hydrogel increases viability, reduces apoptosis, and enhances the function of two types of cells (human adipose‐derived stem cells and hepatocytes) compared with a typical HA hydrogel crosslinked by photopolymerization. Due to the strong tissue adhesiveness of the HA‐CA hydrogel, cells are easily and efficiently transplanted onto various tissues (e.g., liver and heart) without the need for injection. Stem cell therapy using the HA‐CA hydrogel increases angiogenesis in vivo, leading to improved treatment of ischemic diseases. HA‐CA hydrogel also improved hepatic functions of transplanted hepatocytes in vivo. Thus, this bioinspired, tissue‐adhesive HA hydrogel can enhance the efficacy of minimally invasive cell therapy.
Keywords:adhesive hydrogels  catechol  cell therapy  hyaluronic acid  tissue reconstruction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号