首页 | 本学科首页   官方微博 | 高级检索  
     


An accurate numerical solution study of three-dimensional natural convection in a box
Authors:DC Lo
Affiliation:Institute of Maritime Information Science and Technology, National Kaohsiung Marine University, Kaohsiung 805, Taiwan
Abstract:This paper describes the application of the finite difference method to the simulation of three-dimensional natural convection in a box. The velocity–vorticity formulation is employed to represent the mass, momentum, and energy conservations of the fluid medium. We employ a fractional time marching technique for solving seven field variables involving three velocity, three vorticity and one temperature components. By using the fast Fourier transform (FFT) and a tridiagonal matrix algorithm (TDMA), the velocity Poisson equations are advanced in space along with the continuity equation, thus solving efficiently and easily the diagonally dominant tridiagonal matrix equations. Both vorticity and energy equations are discretized through an explicit method (Adams–Bashforth central difference scheme) as a simplified numerical scheme for solving 3D problems, which otherwise requires enormous computational effort. A natural convection in a box for the Rayleigh number equal to 104, 105, 106 and 107 as well as As = Lx / Lz aspect ratios varying from 0.25 to 4 is investigated. It is shown that the benchmark results for temperature and flow fields could be obtained using the present algorithm.
Keywords:Velocity&ndash  vorticity formulation  Fast Fourier transform (FFT)  Tridiagonal matrix algorithm (TDMA)  Aspect ratios
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号