首页 | 本学科首页   官方微博 | 高级检索  
     


A simulation methodology for heat and cold distribution in thermo-hydronic networks
Authors:Roel Vandenbulcke  Luc Mertens  Eddy Janssen
Affiliation:1. Department of Applied Engineering, Karel de Grote University College, Salesianenlaan 30, B-2660, Antwerp, Belgium
Abstract:This paper presents a simulation methodology to analyze hydronic heat distribution systems in a fast and user friendly way. As suggested in its name, the “Base Circuit Methodology” (BCM) is based on the observation that thermo-hydronic networks can be built up as a modular composition of elementary “Base Circuits” (BCs). Once the hydronic and thermodynamic behavior of such basic components is described in a set of dedicated equations, complex thermal distribution networks can easily be modeled by connecting the basic sub models. In addition to control performance simulations (accuracy, stability, speed) the BCM puts extra effort into energy efficiency analysis. In fact, every BC is a local sub unit in which heat flows are gathered, divided or changed in terms of temperature and/or flow. Therefore the BCM model setup yields the opportunity to analyze the net heat transport and its adaptations while crossing the network. Doing so, system designers get the efficiency variables more structured, leading to straightforward abilities to optimize heat and cold distribution. Practical examples prove the benefits of the methodology. Moreover, a test installation was built in which flows, pressures, and temperatures are confronted with the simulation results. The simulations are processed by means of the iterative equation solver EES (Engineering Equation Solver; ©F-chart) which has been experienced as a very compliant software package. As a result the methodology is delivered as a validated and open source library.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号