首页 | 本学科首页   官方微博 | 高级检索  
     

基于粗糙集理论的数控机床智能故障诊断研究
引用本文:姚鑫骅,徐月同,傅建中,陈子辰. 基于粗糙集理论的数控机床智能故障诊断研究[J]. 浙江大学学报(工学版), 2008, 42(10): 1719-1724
作者姓名:姚鑫骅  徐月同  傅建中  陈子辰
作者单位:姚鑫骅,徐月同,傅建中,陈子辰(浙江大学 机械工程学系,浙江 杭州 310027)
基金项目:国家自然科学基金,浙江省科技计划
摘    要:面向数控机床智能化发展需求,提出了基于数据挖掘技术的智能故障诊断方法.建立机床智能诊断单元的系统框架,框架由状态监控及特征信号采集、历史故障数据分析及诊断规则获取、故障推理机制3个功能模块组成.重点研究诊断规则的获取技术,提出了基于粗糙集理论的故障诊断决策规则生成算法.算法充分利用信息决策系统的特性,通过简化对不必要属性和核心属性的分析,并引入回溯思想计算约简集,有效降低了属性集约简的计算复杂度,提高规则求取效率.在建立规则库的基础上,引入基于证据理论的信息融合技术,解决多传感器故障监测数据与诊断规则准确匹配的问题,建立故障推理机制.实例研究证明该方法可行.

关 键 词:数控机床  智能故障诊断  粗糙集  证据理论

Intelligent fault diagnosis of CNC machine tools based on rough set theory
YAO Xin-hua,XU Yue-tong,FU Jian-zhong,CHEN Zi-chen. Intelligent fault diagnosis of CNC machine tools based on rough set theory[J]. Journal of Zhejiang University(Engineering Science), 2008, 42(10): 1719-1724
Authors:YAO Xin-hua  XU Yue-tong  FU Jian-zhong  CHEN Zi-chen
Abstract:An intelligent fault diagnostic method based on data mining was presented to satisfy the development requirements of computer numerical control(CNC) machine tools' intelligence.The framework of intelligent fault diagnosis unit was established consisting of characteristic signal acquisition,diagnosis rule extraction and fault reasoning mechanism.The approach of diagnosis rule extraction was studied and an algorithm for acquisition of decision rules was proposed.The algorithm simplified the analysis procedure of core properties and unnecessary properties by using the characteristics of decision-making system and calculated reduction set by backward tracking approach.The algorithm reduced the complexity in reduction set calculation and improved the efficiency of rule extraction.A fault identification mechanism using evidence theory was presented to process fault data collected by various sensors and exactly match them with diagnosis rules.Case study justified the validity of the method.
Keywords:computer numerical control(CNC) machine tool  intelligent fault diagnosis  rough set  evidence theory
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《浙江大学学报(工学版)》浏览原始摘要信息
点击此处可从《浙江大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号