首页 | 本学科首页   官方微博 | 高级检索  
     

基于属性约简的决策树算法研究
引用本文:楚有斌,唐瑞春,王介强. 基于属性约简的决策树算法研究[J]. 数字社区&智能家居, 2007, 0(15)
作者姓名:楚有斌  唐瑞春  王介强
作者单位:中国海洋大学,山东,青岛,266000 中国海洋大学,山东,青岛,266000 中国海洋大学,山东,青岛,266000
摘    要:针对数据集中无关的、干扰的属性会降低决策树算法性能的问题,提出了一个新的决策树算法,此算法根据对测试属性进行约简选择,提出以测试属性和决策属性的相似性作为决策树的启发规则来构建决策树,同时使用了分类阈值设定方法简化决策树的生成过程.实验证明,该算法运行效率和预测精度都优于传统的ID3算法.

关 键 词:决策树  ID3算法  属性相似度

Research about Decision Tree Algorithm Based on Attribute Reduction Technology
CHU You-bin,TANG Rui-chun,Wang Jie-qiang. Research about Decision Tree Algorithm Based on Attribute Reduction Technology[J]. Digital Community & Smart Home, 2007, 0(15)
Authors:CHU You-bin  TANG Rui-chun  Wang Jie-qiang
Abstract:The irrelevant or distracting attributes in datasets would have negative effect on decision making and lead to lower performance of classifier. In order to solve this problem, a new decision tree algorithm is proposed in this paper. It has an attribute selection on the sample data, and all the other attributes are eliminated except the most relevant attributes .Then the similar degrees of attributes between the test and the decision are computed and used as the inspiring rule to produce the decision tree. The new algorithm also uses the threshold quantity of classification to simplify the process of building the decision tree. The experiments show that the operation efficiency and the accuracy of the new algorithm are higher than the classic ID3 on some datasets.
Keywords:Decision tree  ID3  Similar degree of attribute
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号